臺灣綜合大學系統 105 學年度學士班轉學生聯合招生考試試題

科目名稱	電磁學	類組代碼	<u>D13</u>
		科目碼	<u>D1391</u>
※本項考試信	· · · · · · · · · · · · · · · · · · ·	本試題共計	2 頁

皆為單選題,每題5分,共20題,總分100分。不答0分,每題答錯倒扣1分。

- 1. A=(-1, 2, 0), B=(-1, 0, 3). Please calculate the |AXB| (A)7 (B)10 (C)4 (D)5 (E)12. $V=(x^2, 3xz^2, -2xz)$. Please calculate the $\nabla \cdot V$ at the point (1, 1, 2) (A)0 (B)3 (C)10 (D)9 (E)-3
- 3. $\int_0^6 (3x^2 2x 1)\delta(x 3)dx$ (A) 0 (B) 10 (C) 15 (D) 20 (E) -10
- 4. Suppose the electric field in some region is found to be $E = kr^3 \hat{r}$, in spherical coordinates (k is a constant). Find the charge density ρ (A) $\varepsilon_0 kr^2$ (B) $2\varepsilon_0 kr^2$ (C) $3\varepsilon_0 kr^2$ (D) $4\varepsilon_0 kr^2$ (E) $5\varepsilon_0 kr^2$
- 5. Which one of the electrostatic field is possible (A)(xy, yz, 3zx) (B)(y^2 , $2xy+x^2$, 2yz) (C)(2xy, -2yx, 3zx) (D) (3x, y, $2z^2$) (E) (xz, 3y, yz)
- 6. Find the energy of a uniformly charged spherical shell of total charge q and

radius
$$R$$
 (A) $\frac{q^2}{\pi \varepsilon_0 R}$ (B) $\frac{q^2}{2\pi \varepsilon_0 R}$ (C) $\frac{2q^2}{\pi \varepsilon_0 R}$ (D) $\frac{q^2}{8\pi \varepsilon_0 R}$ (E) $\frac{3q^2}{4\pi \varepsilon_0 R}$

7. Find the electric field produced by a uniformly polarized (P) sphere of radius R

(A)
$$\frac{P}{\varepsilon_0}$$
 (B) $\frac{4\pi P}{3\varepsilon_0}$ (C) $\frac{-P}{3\varepsilon_0}$ (D) $\frac{4\pi P}{\varepsilon_0}$ (E) $\frac{-4\pi P}{3\varepsilon_0}$

- 8. A sphere of radius R carries a polarization P(r)=kr, k is a constant and r is the vector from the center. Calculate the bound volume charge density (A)k (B)-k (C)3k (D)-3k (E)0
- 9. A sphere of radius R carries a polarization P(r)=kr, k is a constant and r is the vector from the center. Calculate the electric field at r < R (A) $\frac{kr}{4\varepsilon_0}$ (B) $\frac{kr}{\varepsilon_0}$ (C)

$$\frac{-kr}{4\varepsilon_0}$$
 (D) $\frac{-kr}{\varepsilon_0}$ (E) 0

10. A capacitor is filled with linear dielectric, and the capacitance is C. The

voltage difference is V. Calculate the charge energy (A) $\frac{CV^2}{2}$ (B) $\frac{CV^2}{4}$ (C) CV^2 (D)

$$\frac{CV^2}{4\pi}$$
 (E) 0

11. Find the magnetic field a distance s from a long straight wire carrying a steady $\mu_0 I$ $\mu_0 I$ $\mu_0 I$ $\mu_0 I$ $\mu_0 I$ $\mu_0 I$

current
$$I$$
 (A)0 (B) $\frac{\mu_0 I}{s}$ (C) $\frac{\mu_0 I}{2\pi s}$ (D) $\frac{3\mu_0 I}{4\pi s}$ (E) $\frac{\mu_0 I}{4\pi s}$

12. An infinitely long cylinder, of radius R, caries a frozen-in magnetization,

parallel to the axis, M = ksz, where is a constant and s is the distance from the axis; there is no free current anywhere. Find the magnetic field inside the cylinder (A)0 (B) $\mu_0 ks$ (C) $2\pi\mu_0 ks$ (D) $2\mu_0 ks$ (E) $4\pi\mu_0 ks$

13. An infinitely long cylinder, of radius R, caries a frozen-in magnetization,

臺灣綜合大學系統 105 學年度學士班轉學生聯合招生考試試題

	電磁學	類組代碼	<u>D13</u>
科目名稱		科目碼	<u>D1391</u>
※本項考試		本試題共計	2 頁

parallel to the axis, $M=ks\,\hat{z}$, where is a constant and s is the distance from the axis; there is no free current anywhere. Find the magnetic field outside the cylinder (A)0 (B) $\mu_0 ks$ (C) $2\pi\mu_0 ks$ (D) $2\,\mu_0 ks$ (E) $4\pi\mu_0 ks$

- 14. A capacitor C has been charged up to potential V; at time t=0, it is connected to a resistor R, and begin to discharge. What is the discharge time constant (A)R/C (B)C/R (C)RC (D)1/RC (E)3RC
- 15. A battery of emf V and internal resistance r is hooked up to a variable load resstance, R. If you want to deliver the maximum possible power to the load, what resistance R should you choose? (A)r (B)r/2 (C)1/r (D)2/r (E)2r
- 16. A capacitor C is charge up to a voltage V and connected to an inductor L in series. What is the discharge time constant? (A)LC (B) \sqrt{LC} (C) $\frac{1}{\sqrt{LC}}$ (D) $\frac{1}{LC}$ (E) $\sqrt{3}LC$
- 17. The electromagnetic wave velocity in vacuum is (A) $\mu_0 \varepsilon_0$ (B) $\frac{1}{\mu_0 \varepsilon_0}$ (C) $\sqrt{\mu_0 \varepsilon_0}$ (D)

$$\frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$
 (E) $\mu \varepsilon$

18. The energy per unit time, per unit area, transported by the electromagntic field

is (A)
$$\frac{\mu_0}{\varepsilon_0}(\vec{E} \times \vec{B})$$
 (B) $\varepsilon_0(\vec{E} \times \vec{B})$ (C) $\frac{\varepsilon_0}{\mu_0}(\vec{E} \times \vec{B})$ (D) $\frac{1}{\mu_0}(\vec{E} \times \vec{B})$ (E) $(\vec{E} \times \vec{B})$

19. The momentum per unit time, per unit area, transported by the electromagntic

field is (A)
$$\frac{\mu_0}{\varepsilon_0}(\vec{E} \times \vec{B})$$
 (B) $\varepsilon_0(\vec{E} \times \vec{B})$ (C) $\frac{\varepsilon_0}{\mu_0}(\vec{E} \times \vec{B})$ (D) $\frac{1}{\mu_0}(\vec{E} \times \vec{B})$ (E) $(\vec{E} \times \vec{B})$

20. Electromagnetic wave in vacuum, the electric field is E, magnetic field is B, and the speed is C. Which one is correct? (A) E = B (B) E = CB (C) CE = B (D) $C^2E = B$ (E) $E = C^2B$