41日 4 49	普通化學 A	類組代碼	<u>E00</u>
科目名稱		科目碼	E0017

※本項考試依簡章規定各考科均「不可以」使用計算機

本試題共計5頁

一、選擇題(單選題,每題2分,不扣分,答案請寫在答案卷上)

- 1. How many of the following postulates of Dalton's atomic theory are still scientifically accepted?
 - I. All atoms of the same element are identical.
 - II. Compounds are combinations of different atoms.
 - III. A chemical reaction changes the way atoms are grouped together.
 - IV. Atoms are indestructible.
 - A) 0
- B) 1
- C) 2
- D) 3
- E) 4
- 2. By knowing the number of protons a neutral atom has, you should be able to determine
 - A) the number of neutrons in the neutral atom
- B) the name of the atom
- C) the number of electrons in the neutral atom
- D) two of the above

- E) none of the above
- 3. Three 1.00-L flasks at 25°C and 725 torr contain the gases CH₄ (flask A), CO₂ (flask B), and C₂H₆ (flask C). In which single flask do the molecules have the greatest mass, the greatest average velocity, and the highest kinetic energy?
 - A) flask A
- B) flask B
- C) flask C
- D) all
- E) none
- 4. The value of the equilibrium constant K is dependent on:
 - I. the temperature of the system.

II. the nature of the reactants and products.

III. the concentration of the reactants.

IV. the concentration of the products

- A) I and II only
- B) II and III only
- C) III and IV only

- D) three of these E) none of these
- 5. The acids HC₂H₃O₂ and HF are both weak, but HF is a stronger acid than HC₂H₃O₂. HCl is a strong acid. Order the following according to base strength.
- B) $C_2H_3O_2^- > F^- > H_2O > Cl^-$
- A) $C_2H_3O_2^- > F^- > C1^- > H_2O$ C) $C1^- > F^- > C_2H_3O_2^- > H_2O$
- D) $F^- > C_2H_3O_2^- > H_2O > Cl^-$

- E) none of these
- 6. Consider the following information about the diprotic acid ascorbic acid (H₂As stands for ascorbic acid: molar mass = 176.1).

$$K_{a1}$$
 p K_a
 $H_2As \rightleftharpoons H^+ + HAs^-$ 7.9 x 10⁻⁵ 4.10
 $HAs \rightleftharpoons H^+ + As^{2-}$ 1.6 x 10⁻¹² 11.79

The titration curve for disodium ascorbate, Na₂As, with standard HCl is shown below:

What major species is(are) present at point III?

- A) As²⁻ and HAs⁻ D) H₂As only
- B) HAs only E) H₂As and H⁺
- C) HAs⁻ and H₂As

		•			•	
科目名稱		推: 第 /	L AL A		類組代碼	<u>E00</u>
们口心們		11年1	と學 A		科目碼	E0017
※本項考註	试依簡章規定	各考科均「不可	以」使用計算	车機	本試題	1共計5頁
two solution A) 0.1 M K B) 0.1 M K C) 0.2 M K	ons are mixed? OH and 0.1 <i>M</i> OH and 0.2 <i>M</i> OH and 0.1 <i>M</i> OH and 0.2 <i>M</i>	CH3NH3Cl CH3NH2 CH3NH3Cl	oduce a buffe	red solution whe	en 1.0 L of e	ach of the
A) The intersystem to system to system to B) The intersection heat is for C) The system constant D) All the system constant D) All the system constant D)	ernal energy of than heat is flowernal energy of lowing into the	on the surroundi ure. true.	ses when more stem. ses when work	is done on the	system and	
9. For which of product?	of the followin	g reaction(s) is the	ne enthalpy ch	ange for the rea	ction <i>not</i> equ	al to $\Delta H^{\circ}_{\mathrm{f}}$ of the
I. 2H(g)	\rightarrow H ₂ (g) II. I	$H_2(g) + O_2(g) \rightarrow$	$H_2O_2(l)$ III.	$H_2O(l) + O(g) -$	\rightarrow H ₂ O ₂ (l)	
A) I only	B) II only	C) III only	D) I and III	E) II and II		
ΔG , respec	ctively?	liquid water at – + 0 C)-			_	for ΔH , ΔS , and ΔS , ΔS , and ΔS
	ble, unfavorabl	ermic reactions a e B) unfavorab able E) cannot to	ole, favorable			
12. The reacti sum of the	on below occu coefficients?	rs in basic soluti	on. In the bala	nced equation, v	what is the	
Zn -	$+ NO_3^- \rightarrow Zn(0)$	$OH)_4^{2-} + NH_3$				
A) 12	B) 15	C) 19	D) 23	E) 27		
Fe ³⁺	$f(aq) + e^- \rightarrow Fe$	nent(s) given the $e^{2^+}(aq)$ $E^{\circ} = 0$ Fe(CN) e^{4^-} $E^{\circ} = 0$.77 V	ormation:		
II. Fe ³⁺ (<i>aq</i> III. Compl reduce	y) is more likely lexation of Fe i rd.	to be oxidized to y to be reduced to ons with CN ⁻ ha	han Fe ³⁺ comp s no effect on	plexed to CN ⁻ . their tendencies		oxidized or

41日419	普通化學 A				類組代碼	<u>E00</u>		
科目名稱			百理	16字 8			科目碼	E0017
※本項考証	式依簡章規	定各考和	斗均「不可	丁以」1	吏用計算	機	本試見	夏共計5頁
	$n\bar{d} x = L/2?$	(L is the)	e length of	f the bo	x.)	ensional box E) 50%	in energy lev	yel n = 4 between
The state of the s	$CF_2Cl_2 > C$ > $CF_2H_2 >$	$F_2H_2 > C$ $CCl_2H_2 > C$	CCl ₄ > CCl > CH ₄ = C	₂ H ₂ :	B) CH ₄ >	from most pol CF ₂ H ₂ > CF ₂ ₂ > CCl ₂ H ₂ >	$Cl_2 > CCl_4 >$	· CCl ₂ H ₂
16. Which of the A) CH ₃ ⁺	the following B) XeO ₄	_		ons has O) CH3	_		s on the cent	ral atom?
17. Which star A) Its Lewi B) Its shape C) Only one D) There ar E) none of the	s structure is bent like correct re	contains te that of sonance	an unpaire H ₂ O. structure c	ed elect an be c	ron.	e?		
								\times 10 ⁻² mol/L • s integrated rate
) [A] – [A	$\mathbf{A}]_0 = kt$		C) [A]/[$\mathbf{A}]_0 = kt$	D) ln([A]	$J/[A])_0 = kt$
density IV. Atoms	agonal clos -centered c it cells hav than a bod	sest-packer bubic unithing the safety-centered consisting	ed structur cell has for ame edge led cube. g of only o	e is AF our ator ength, one eler	BAB ns per un a simple nent wou	cubic structur		ors if the crystal
20. Which of the changes?	the following	ng conce	ntration m	easures	will char	nge in value a	s the tempera	ature of a solutio
A) mass pe	rcent	B) mole	fraction	C) m	olality	D) molarity	E) all	of these
21. Hydrogen the primary A) The med B) The ion C) Electron	reason for tallic chara tzation ener	r this diff cter incre rgy incre	erence? eases going ases going	g down down	a group. a group.	ey are both m	embers of G	roup 1. What is

D) Electronegativity increases going down a group.

E) There is a very large difference in the atomic radii of H and Li.

E00 類組代碼 科目名稱 普通化學A E0017 科目碼

※本項考試依簡章規定各考科均「不可以」使用計算機

本試題共計5頁

22. Which of the following complexes can exhibit optical isomerism?

(en = H_2N - CH_2 - CH_2 - NH_2 and is bidentate)

- A) cis-Co(NH₃)₄Cl₂
- B) trans-Co(en)₂Br₂
- C) cis-Co(en)₂Cl₂

- D) $Co(NH_3)_3Cl_3$
- E) none of these
- 23. Which reaction will produce an isotope of the parent nuclide?
 - A) $^{210}_{84}$ Po \rightarrow He +? B) $^{88}_{35}$ Br \rightarrow n+? C) $^{227}_{89}$ Ac \rightarrow β +? D) $^{13}_{7}$ N \rightarrow β +? E) $^{73}_{33}$ As + e \rightarrow ?

- 24. Which of the following is optically active (that is, chiral)?
 - A) dimethylamine
- B) difluoromethane
- C) 2-chloropropane

- D) 2-chlorobutane
- E) 1-bromohexane
- 25. Which statement is true for ethane (C_2H_6) ?
 - A) The C—C bond is stronger than the C—H bond.
 - B) The C—C bond is sterically hindered.
 - C) It is a cyclic alkane.
 - D) It is an unsaturated organic compound.
 - E) It cannot be converted into the radical form.

二、問答題(50分,答案請寫在答案卷上)

- 1. The isotope of an unknown element, X, has a mass number of 79. The most stable ion of the isotope has 36 electrons and forms a binary compound with sodium having a formula of Na₂X. Which of the following statements is (are) true? For the false statements, correct them.
 - a. The binary compound formed between X and fluorine will be an ionic compound. (4%)
 - b. The isotope of X contains 38 protons. (2%)
 - c. The isotope of X contains 41 neutrons. (2%)
- 2. Consider the following half reactions:

 $Pt^{2+} + 2e^- \rightarrow Pt$

$$E^{\circ} = 1.188 \text{ V}$$

 $PtCl_4^{2-} + 2e^- \rightarrow Pt + 4Cl_4^-$

$$E^{\circ} = 0.755 \text{ V}$$

$$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$$
 $E^\circ = 0.96 \text{ V}$

$$F^{\circ} = 0.96 \text{ V}$$

Explain why platinum metal will dissolve in aqua regia (a mixture of hydrochloric and nitric acids) but not in either concentrated nitric or concentrated hydrochloric acid individually. (8%)

3. a). At what temperature is the following process spontaneous at 1 atm? (4%)

$$\operatorname{Br}_2(l) \to \operatorname{Br}_2(g)$$

Where
$$\Delta H^0 = 31.0 \text{ kJ/mol}$$
 and $\Delta S^0 = 93.0 \text{ JK}^{-1} \text{ mol}^{-1}$

- b). What is the normal boiling point of liquid Br₂? (4%)
- 4. Predict the number of unpaired electrons in the complex ion of [Cr(CN)₆]⁴. Account for your answer. (Atomic number of Cr is 24) (8%)

科目名稱	普通化學 A	類組代碼	<u>E00</u>
11 H 70 197	百地10字 A	科目碼	E0017
※本項考試係	衣簡章規定各考科均「不可以」使用計算機	本試題	————— 共計 5 頁

- 5. Experimental data for the reaction of $A \rightarrow 2B + C$ have been plotted in the following three different ways. Please answer the following three questions:
 - a. What is the order of the reaction with respect to A, and what is the initial concentration of A? Account for your answer. (5%)
 - b. What is the concentration of A after 9 seconds? (5%)

- 6. Consider the following graph of the binding energy per nucleon as a function of mass number. Please answer:
 - a). What does this graph tell us about the relative half-lives of the nuclides? Explain your answer. (4%)
 - b). Which nuclide shown is the most thermodynamically stable? Which nuclide is the least thermodynamically stable. Explain your answer. (4%)

