臺灣綜合大學系統 106 學年度學士班轉學生聯合招生考試試題

到日夕经	微積分 A	類組代碼	
科目名稱		科目碼	E0011
※太項老試依簡章		本科試題共訂	+ 2 頁

1. (10 points) Given a curve C in \mathbb{R}^2 defined by

$$\ln(1 - x^3 + y^3) - 4 = 0.$$

Find the point on C at which the tangent line is vertical.

2. (10 points) If the function

$$f(x) = \begin{cases} \frac{\sin(4x) + a - 2b}{3x} & x \neq 0\\ 2a + b & x = 0 \end{cases}$$

is continuous at x = 0, then (a, b) = ?

- 3. (10 points) Write down the first three terms (three lowest order terms) of the Taylor series of $\frac{\tan^{-1}(2x)}{1-x}$ at 0. (Hint: $\tan^{-1}u = \int ?du$)
- 4. (10 points) Evaluate the following integral:

$$\int_0^1 \int_{\sqrt{x}}^1 x \, \cos(y^5 + 2) \, dy \, dx.$$

5. (10 points) From the equation

$$e^{x^2} + y^2 \sin(2x) = 4y,$$

Solve $\frac{dy}{dx}$ in terms of x and y

6. (10 points) Find all values of a so that the series

$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^{3a-1}+3}\right)$$

is divergent.

背面有題,請繼續作答。

臺灣綜合大學系統 106 學年度學士班轉學生聯合招生考試試題

科目名稱	微積分 A	類組代碼	
		科目碼	E0011
※本項考試依簡章規定各考科均「不可以」使用計算機		本科試題共計 2 頁	

7. (10 points) Compute the following improper integral

$$\int_0^\infty e^{-4x^2} \ dx.$$

8. (10 points) Compute the line integral

$$\oint_C \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}},$$

where

$$\overrightarrow{\mathbf{F}}(x,y) = (4y + 6ye^{2x}, 6x + 3e^{2x})$$

and C is the closed loop formed by traveling from (-2,0) to (4,0) to (3,3) to (-1,3) and back to (-2,0) by straight lines.

9. (10 points) Given the function $F: \mathbb{R}^3 \to \mathbb{R}$ by

$$F(x, y, z) = e^{x+y^2 + \cos z}.$$

At (0,0,0), find the direction along which the function decreases most rapidly and find the corresponding rate of change.

10. (10 points) A rectangular box is formed by cutting four equal corners from a square of side 3 and then folding up (see the figure below). Find the maximum possible volume of the box.

