臺灣綜合大學系統 106 學年度學士班轉學生聯合招生考試試題

科目名稱	工程數學	類組代碼	<u>D36</u>
		科目碼	D3601
※本項考試		本科試題共	十 10 百

1. (20%)(a) Solve the initial-value problem

$$\frac{d^2x}{dt^2} + \omega^2 x = F_0 \cos^2 \gamma t, \ x(0) = 0, \ x'(0) = 0.$$
 (10%)

- (b) Discuss under what frequency of γ the system is in pure resonance. (10%)
- 2. (20%) Find a matrix A such that

$$\mathbf{A} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} x - y \\ x + y + 2w \end{bmatrix}$$

- 3. (20%) Let **u** be an $n \times 1$ column matrix satisfying $\mathbf{u}^T \mathbf{u} = 1$. The $n \times n$ matrix $\mathbf{H} = \mathbf{I}_n 2\mathbf{u}\mathbf{u}^T$ is called a Householder matrix. Prove that **H** is symmetric and nonsingular (\mathbf{I}_n is an $n \times n$ identity matrix)
- 4. (20%) Solve the diffusion problem $u_t = ku_{xx}$ in 0 < x < L, with the mixed boundary conditions $u(0,t) = u_x(L,t) = 0$ and initial condition u(x,0) = f(x)
- 5. (20%) Let $f(x,y) = \ln(x^2 + y^2 + 1) + e^{2xy}$
 - (a) Find the gradient of f at the point (0, -2) (7%)
 - (b) Find the directional derivative of f at the point (0, -2) in the direction of the vector $\mathbf{v} = 5\mathbf{i} 12\mathbf{j}$ (7%)
 - (c) Find the maximum value of the directional derivative at the point (0, -2). (6%)