臺灣綜合大學系統 107 學年度學士班轉學生聯合招生考試試題

41 7 4 40	Δ1. 4± Λ D	類組代碼	共同考科
科目名稱	微積分B	科目碼	E0012
※本項考試依簡	章規定各考科均「不可以」使用計算機	本科試題	共計 2 頁

Answer without complete work shown receives no credit. 所有計算過程都必須詳細列出,否則不予計分。

1. (10 points) Find the following limits.

$$\lim_{x \to 0} \frac{\sin(4x^3)}{x}.$$

2. (10 points) Consider a circular conic tank shown below. The water is drained at the bottom at the rate of $2 m^3$ per second. Find the rate of change of height h when the top circular surface of water has radius 1m.

Recall that the volume of a circular cone is $\frac{1}{3}\pi r^2 h$.

3. (10 points) Evaluate the indefinite integral

$$\int \sin(\sqrt{x}) \ dx.$$

4. (10 points) Find the equation of tangent plane to the surface defined by

$$x^2 + 2y^2 + xy + e^z = 2$$

at the point P = (1, 0, 0).

臺灣綜合大學系統 107 學年度學士班轉學生聯合招生考試試題

科目名稱	微積分B	類組代碼 科目碼	共同考科 E0012
※木項老試	依簡章規定各考科均「不可以」使用計算機	本科試題	共計 2 頁

5. (10 points) Evaluate the improper integral

$$\int_{1}^{\infty} \frac{3x^2 + 1}{x^4 + x^2} \, dx.$$

6. (10 points) Consider the function

$$f(x,y) = \begin{cases} \frac{2x^3 + xy}{x^2 + y^2} & ; (x,y) \neq (0,0) \\ 0 & ; (x,y) = (0,0). \end{cases}$$

Find $\frac{\partial f}{\partial x}$ at (0,0) if existed. If it does not exist, explain why.

7. (10 points) Find the point where local minimum for the function

$$f(x) = \int_0^{x^3 - 3x} e^{\cos(t^2 + 1)} dt$$

occurs.

8. (10 points) Write down the Taylor series expansion for the function

$$f(x) = \frac{x^3}{1 + x^2}$$

at x = 0.

9. (10 points) Compute the integral

$$\int_{0}^{1} \int_{x}^{1} \cos(y^{2} + 1) \, dy dx.$$

10. (10 points) Use Lagrange multiplier method to maximize the function

$$f(x, y, z) = 2x + 3y + 5z$$

on the sphere

$$x^2 + y^2 + z^2 = 19.$$

Note: any other method receives no credit.