科目名稱		.1 .1. th SH	類組代碼	C07			
		生物化學	科目碼	C0701			
;	※本項考試依簡章規定各考科均「不可以」使用計算機 本科試題共計 4 頁						
A.	A. Multiple Choices (50%, 2% each; one correct answer only, 共 25 題)						
	請於答案	卷上作答,否則不予計分					
1.	A solution	with a pH of 10 is times as basic as one with	a pH of 8.				
	A) 2	B) 3 C) 10 D) 100 E) 1,000	-				
	,,,,,,,,,,,,,						
2	Amino aci	ds are linked by bonds to form the primary s	tructure of a pr	cotein.			
۷.	A) Disulf	ide B) hydrogen C) ionic D) peptide	1				
	/1) 1) 13u11.	ide D) nydrogen C) foliae D) populae					
2	. The information built into a protein's amino acid sequence plus a coiled pattern of that chain and						
٥.	the addition of more folding yields the level of protein structure.						
	the addition	D) mineral C) secondary D) tertis	err				
	A) quater	nary B) primary C) secondary D) tertia	ıı y	1			
	Y 1' '11	"1	on that avalude	a syntar			
4.	in a lipid t	pilayer, tails point inward and form a(n) region	in mai exclude	,s water.			
	A) acidic	B) basic C) hydrophilic D) hydrophob	oic .				
	***	D+ 11 1/1 1 1 1 NAD+1.					
5.	When NA	D ⁺ combines with hydrogen, the NAD ⁺ is d B) oxidized C) phosphorylated D) d	. 4 1				
	A) reduce	d B) oxidized C) phosphorylated D) d	enatured				
6.	An alloste	ric enzyme		1 11 1			
	A) has an	active site where substrate molecules bind and another	er site that bin	ds with intermediate			
	or end	-product molecules					
	B) is an in	mportant energy-carrying nucleotide					
	C) carries	out either oxidation reactions or reduction reactions by	it not both				
		the activation energy of the chemical reaction it catalyz					
	,						
7.	Glycolysis	s would quickly halt if the process ran out of	, which serves	as the hydrogen and			
	electron a	cceptor.					
	A) NADE	$^{+}$ B) ADP C) NAD $^{+}$ D) H ₂ O					
	HENNING HOLDER TO						
8.	When glu	cose is used as an energy source, the largest amount of	ATP is genera	ited by the			
.	_	the entire respiratory process.	_				
	A) glycol	ytic pathway B) acety-CoA formation	C) Krebs cy	cle			
		n transport phosphorylation	,				
	D) citocare	in transport prospercy-					
9.	During the	e fermentation pathways, a net yield of two ATP is pr	oduced from	; the NAD ⁺			
٠.	necessary	for is regenerated during the reactions.	-				
	A) the Vr	ebs cycle; glycolysis B) glycolysis; electron trar	sport phospho	rylation			
	A) the Ki	ebs cycle; electron transport phosphorylation D	rajacojasis, aj	veolveis			
	C) the Kit	eds cycle, electron transport phospholylation	, gry cory 515, gr	y cory 515			
10	Early DM	A strand has a healthone that consists of alternating					
10.		A strand has a backbone that consists of alternating s and pyrimidines B) nitrogen-containing ten bonds D) sugar and phosphat	hoses				
		s and pyrimidines B) nitrogen-containing	o mologulog				
	C) hydrog	gen bonds D) sugar and phosphat	e molecules				
	A 1 CC						
11	. A buffer	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	hadr				
	A) is an acid that is used to offset overly basic conditions in the body						
	B) is a base that is used to offset overly acidic conditions in the body						
C) donates H ⁺ ions when conditions become too basic and accepts H ⁺ ions when conditions become							
	too ac			4 4400			
	D) donate	es OH ions when conditions become too basic and	accepts OH i	ons when conditions			
		ne too acidic					

41 17 17 46	生物化學	類組代碼	C07		
科目名稱		科目碼	C0'	701	
※本項考言	式依簡章規定各考科均「不可以」使用計算機	本科試是	夏共計 4	頁	
 12. The molecular formula of most monosaccharides represents a multiple of A) CH₃O B) CH₂O C) CHO D) CHO₂ E) CHO₃ 13. One way to convert an oil into a substance that is solid at room temperature is to A) add hydrogens, decreasing the number of double bonds in the molecules B) remove water, causing a dehydration synthesis reaction to occur C) remove hydrogens, increasing the number of double bonds D) put it in the refrigerator; when unsaturated fats cool, double bonds form and fats solidify 					
E) add water and sake vigorously 14. Anything that prevents ATP formation will A) result in cell death B) force the cell rely on lipids for energy C) result in the conversion of kinetic energy to potential energy D) force the cell to rely on ADP for energy E) have no effect on the cell					
A) the reg B) the hig C) the reg	e site of an enzyme is gion of a substrate that is changed by an enzyme while changeable portion of an enzyme that adapts to fit to gion of an enzyme that attaches to a substrate gion of a product that detaches from the enzyme and d	the substrates o	of various 1	reaction	
A) breaki B) remov C) causin D) breaki	ng the covalent bonds that hold the molecule together ing phosphate groups from the enzyme g enzyme molecules to stick together ng the hydrogen bonds that give the molecules its three of the above	-dimensional s	hape		
inhibition A) Comp reacta B) Comp irrever C) Comp polype D) Comp differe E) Comp	etitive inhibitors bind to the enzyme reversibly; nor	etitive inhibito ncompetitive i e; noncompeti noncompetitive	ns interferent inhibitors tive inhibitors	e with the bind to it tors cause s bind to a	
with incre of A) compe	production of the enzyme needed for the synthesis of asing levels of tryptophan and increases as tryptophan effective inhibition B) noncompetitive inhibition E) irreversible inhibition	levels decline		n example	

	生物化學	類組代碼	C07			
科目名稱		科目碼	C0701			
※本項考記	《依簡章規定各考科均「不可以」使用計算機	本科試題	5共計 4 頁			
A) energy	diffusion across a biological membrane requires	and re	emoves a substance			
20. An inherited lack (or shortagE) of functional LDL receptors causes A) type I diabetes B) Marfan's syndrome C) hypercholesterolemia D) hyperbilirubinemia						
	nte source of nearly all energy available to life on Earth ynthesis B) cellular respiration C) electricity		E) sunlight			
 22. During redox reactions, A) the loss of electrons from one substance is called reduction B) a substance that gain electron is said to be oxidized C) electrons are lost from one substance and added to another substance D) protons from one molecule replace the electrons lost from another molecule E) A, B, and C 						
23. Unlike those of eukaryotes, the electron transport chains or prokaryotes are located in/on the A) endoplasmic reticulum B) nuclear membrane C) central vacuole D) plasma membrane E) Golgi apparatus						
24. The end-products of glycolysis include A) FADH B) NADH C) acetyl CoA D) citric acid E) O ₂						
25. What mair A) peptide D) ionic b		lrogen bonds				
B. Essays (50%, 共 9 題)						
1. Animals cannot convert fatty acids to glucose. Why? (5%)						
2. Give the location of the following metabolisms in cells: (a) glycolysis (1%) (b) citric acid cycle (1%) (c) glyoxylate cycle (1%) (d) pyruvate oxidative decarboxylation (1%) (e) oxidative phosphorylation (1%) (f) pentose phosphate pathway (1%) (g) gluconeogenesis (1%)						
3. Give the p	athway of respiratory electron-transport chain from NA	1 DH to 0 2. (4%)	6)			
4. Give two 1	najor routes for production of NADPH in mammals. (4	%)				

	. V 1. 22	類組代碼	C07				
科目名稱	HB名稱 生物化學	科目碼	C0701				
※本項考討		本科試是	夏共計 4 頁				
5. Give the structure of the following molecules:							
(a) arginine (1%) (b) tryptophan (1%)							
	(c) threonine (1%)						
	(d) valine (1%)						
(e) γ-carbo	(e) γ-carboxyglutamate (1%)						
(f) pyruvat	e (1%)						
(g) succina	· '						
, , ,	glutarate (1%)						
\ \ / L	penolpyruvate (1%)						
(j) lactate (1%)						
6. What struc	tural differences characterize amylose and amylopecting	n? (5%)					
	7. Indicate whether each of the following pairs of sugars consists of anomers, epimers, or an aldose-						
ketose pair:	(40/)						
	raldehyde and dehydroxyacetone (1%)						
, , ,	se and D-mannose (1%)						
	cose and β-D-glucose (1%) ronic acid and L-iduronic acid (1%)						
	and D-ribulose (1%)						
(0) D 110030	Talia D Tiodiose (170)						
8. The pK _a of the α -COO and α -NH3 ⁺ group is less than that of acetic acid and methylamine, respectively. Why? (5%)							
9. Ketone bodies will be built up in the fasting mice. Why? (5%)							