臺灣綜合大學系統108學年度學士班轉學生聯合招生考試試題

11 12 4 150	線性代數	類組代碼	D25
科目名稱		科目碼	D2592
※ 太頂老討	· 依 館 音 規 定 久 老 科 均 「 不 可 以 」 使 用 計 笪 機	太科試題	共計3百

- 一、單選題 (30%,每題恰有一個選項是正確的,請依序標明題號後在「答案卷」上 作答。)
- (1). (5 pts) Let $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 x_2 + x_3 = 0\}$, denote S^{\perp} be the set of all vectors in \mathbb{R}^3 that are orthogonal to every vector in S. Which of the following is correct?
 - (A) $(1,1,0) \in S^{\perp}$.
 - (B) $(1, -1, 1) \in S^{\perp}$.
 - (C) S is a subspace of \mathbb{R}^3 and dim S=1.
 - (D) Let $(1, 1, 0) = \mathbf{w} + \mathbf{z}$ such that $\mathbf{w} \in S$ and $\mathbf{z} \in S^{\perp}$, then $\mathbf{z} = (\frac{1}{3}, -\frac{1}{3}, \frac{1}{3})$.
 - (E) Span $\{(-1,0,1),(-1,1,-1)\}\subset S$.
- (2). (5 pts) Let $A \in M^{4\times 4}(\mathbb{R})$ and det A = -4. Which of the following statements is correct?
 - (A) The adjoint matrix adj A has determinant -64.
 - (B) $\det A^T = 16$.
 - (C) $\det(-A) = -4$.
 - (D) If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4]$ and $\mathbf{b} \in \text{Span}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4\}$. Then $\det A = \det [\mathbf{a}_1 + \mathbf{b} \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4]$.
 - (E) A is singular.
- (3). (5 pts) Suppose the matrix $\begin{bmatrix} 1 & 2 & 3 & 1 & b \\ 2 & 5 & 3 & a & 0 \\ 1 & 0 & 8 & 6 & c \end{bmatrix}$ can be transformed to the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & -2 & 0 \\ 0 & 1 & 0 & d & -1 \\ 0 & 0 & 1 & 1 & e \end{bmatrix}$. Which of the following is correct?

(A)
$$a = 1$$
. (B) $b = 3$. (C) $c = 20$. (D) $d = -1$. (E) $e = 2$.

- (4). (5 pts) Let $A = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 2 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, and $E = \begin{bmatrix} 2 & 0 \\ 3 & 2 \end{bmatrix}$. Which of the following statements is correct?
 - (A) A is similar to D.
 - (B) B is similar to D.
 - (C) A is similar to E.
 - (D) C is similar to D.
 - (E) E is similar to D.

11 11 17 15	線性代數	類組代碼	D25
科目名稱		科目碼	D2592
※ 木項老註	依簡章規定各老科均「不可以」使用計算機	本科試題:	共計 3 頁

(5). (5 pts) Which of the following statements is correct?

- (A) If the reduced row echelon form of $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ contains a zero,row, then $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.
- (B) If V and W are subspaces of \mathbb{R}^n having the same dimension, then V = W.
- (C) Let $M^{m \times n}$ denote the space of all $m \times n$ matrices. A matrix representation of a linear operator on $M^{m \times n}$ is an $m \times n$ matrix.
- (D) A mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ is uniquely determined by its images of the standard vectors in \mathbb{R}^n .
- (E) Let A, B, and C be any matrices such that the product ABC is defined. Then $rank(ABC) \leq rank B$.
- (6). (5 pts) Which of the following statement is wrong?
 - (A) For any $n \times n$ matrix A, the columns of A are linearly independent if and only if the rows of A are linearly independent.
 - (B) For an $m \times n$ matrix A, the nullity of A equals the nullity of its transpose A^T .
 - (C) An $m \times n$ matrix A defines some linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$. T_A is onto if and only if rank A = m.
 - (D) A set S of vectors forms a basis for a subspace V of \mathbb{R}^n if and only if the vectors of S are linearly independent and the number of vectors in S equals the dimension of V.
 - (E) The set $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | 3x_1 + 2x_2 x_3 = 1\}$ is not a subspace of \mathbb{R}^3 .

二、填充題 (70%,請依序標明格號後在「答案卷」上作答。)

- (10 pts) Let $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Let A = QR be the QR-decomposition of A. Then $Q = \underline{\qquad (7) \qquad}$, and $R = \underline{\qquad (8) \qquad}$.
- (15 pts) Let $A = \begin{bmatrix} 2 & -2 & 0 & 1 \\ 0 & 3 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 3 \end{bmatrix}$. Let n be the number of the Jordan blocks of A. Then $n = \underbrace{ (9) }$.

※ 本項考試依簡章規定各考科均「不可以」使用計算機

本科試題共計 3 頁

- (15 pts) Let $M = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$. Let $M = U\Sigma V^T$ be the singular value decomposition of M. Then $U = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, and $V = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.
- (10 pts) Let $A = \begin{bmatrix} 3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0 \end{bmatrix}$. Then $\det A =$ ____(13)___.
- Suppose $V = M^{2\times 2}(\mathbb{R})$. Let V_1, V_2 be two subspaces of V defined by

$$V_1 = \left\{ \begin{bmatrix} a+b & 2a+3b \\ b & b \end{bmatrix} \middle| a, b \in \mathbb{R} \right\},$$

$$V_2 = \left\{ \begin{bmatrix} 0 & a \\ -a+2b & b \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}.$$

Then

(i) (8 pts) dim
$$V_1$$
 + dim V_2 = _____(14)____.

(ii) (8 pts)
$$\dim(V_1 + V_2) =$$
_____(15)___.

(iii) (4 pts)
$$\dim(V_1 \cap V_2) =$$
______(16)____.