臺灣綜合大學系統 111 學年度學士班轉學生聯合招生考試試題

科目名稱	普通化學A	類組代碼	共同考科
		科目碼	E0017
※本項考試依簡章規定所有考科均「不可」使用計算機。		本科試題	共計 3 頁

一、計算題與簡答題 共 10 題:請依序作答;計算題請詳列計算過程才予計分

- 1. (a) For the hypothetical reactions 1 and 2, $K_1 = 10^2$ and $K_2 = 10^{-4}$; Please calculate K3 value. (5%)
 - 1. $A_2(g) + B_2(g) \implies 2AB(g)$ K_1
 - 2. $2A_2(g) + C_2(g) \implies 2A_2C(g) \quad K_2$
 - 3. $A_2C(g) + B_2(g) \implies 2AB(g) + (1/2)C_2(g)$ $K_3 = ?$
 - (b) Calculate the ratio of the change in momentum per wall impact for Ar(g) to that for He(g) if the gases are at the same temperature and pressure. (He: 4.0; Ar: 40.0) (5%)
- 2. (a) A 0.10 M solution of the salt NaA has pH = 9.0. Calculate K_a for the acid HA. (5%)
 - (b) Calculate the pH when 200.0 mL of a 1.00 M solution of H₂A ($K_{a1} = 1.0 \times 10^{-6}$, $K_{a2} = 1.0 \times 10^{-10}$) is titrated with the 100 mL of 1.00 M NaOH. (5%)
- 3. (a) What is Henry's law? Use this law to explain the fizzing when opening a can of soda. (4%)
 - (b) Draw the phase diagram of CO_2 the T_3 (triple point: 5.1 atm, $-56^{\circ}C$) and use this phase diagram to explain why only sublimation occurs at 1.0 atm. (6 %)
- 4. (a) Why is the vibration frequency of C-H bond at 2850-3300 cm⁻¹ higher than that of C-O bond at 1080-1300 cm⁻¹? (4 %).
 - (b) Draw and brief describe a ¹H-NMR spectrum of the CH₃CH₂–Br. (including the internal standard TMS, chemical shift and spin-spin coupling) (6 %)

臺灣綜合大學系統111 學年度學士班轉學生聯合招生考試試題

	普通化學A	類組代碼	共同考科
科目名稱		科目碼	E0017
※本項考試依何		本科試題共計 3 頁	

- 5. (a) Derive the integrated rate law of second-order reaction. (5 %)
 - (b) Why is the reaction in the following plot a first-order reaction? (3 %) and also calculate the rate constant of this reaction. (2 %)

- 6. Calculate the following thermodynamic properties of 1 mole monatomic idea gas,
 (1). Internal energy at 27 °C, (2). C_p; (3). △S = ? when the volume changes from V to 4V at T = 50°C. (4). What is the potential energy at 50°C? (gas constant = R; 10 %)
- 7. (a) Write the Schrödinger equation for the particle in a box. (3 %)
 - (b) What is the energy of an electron with the mass m_e confined in a box with a length of L at the lowest 4th energy level. (3 %)
 - (c) As the length of the nanoparticles increases, how the energy gap ($\triangle E$) changes? (no change, increase or decrease?); why? (4 %)
- 8. Use the molecular orbital model and draw MO energy-level diagrams to predict the magnetism and bond order of NO molecule and NO⁺ ion. (10 %)

3

頁

臺灣綜合大學系統 111 學年度學士班轉學生聯合招生考試試題

	普通化學A	類組代碼	共同考科
科目名稱		科目碼	E0017
※太項考試依簡言	医规定所有考科均「不可」使用計算機。	本科試題	共計 3 頁

- 9. (a) Please draw all the structural and geometric isomers are there of chloropropene? (4%)
 - (b) What compound does the oxidation of secondary alcohols results in? (3%)
 - (c) What monomer(s) is (are) needed to produce the following polymer?(3%)

$$\begin{bmatrix} \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ | & | & | \\ -\text{C} & \text{CH}_2 - \text{C} & \text{CH}_2 - \text{C} & \text{CH}_2 - \\ | & | & | \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \end{bmatrix}_n$$

- 10. (a) Please use the crystal field model to predict how many unpaired electrons are there in a complex ion having a d⁶ electron configuration and an octahedral geometry in the weak-field case? (4%)
 - (b). Please use the crystal field model to predict how many unpaired electrons are found in Mn(NH₃)₄³⁺ (tetrahedral)? (Mn: $4s^23d^5$) (4%)
 - (c) Which transition metal is a component of vitamin B_{12} ? (2%)