臺灣綜合大學系統 111 學年度學士班轉學生聯合招生考試試題

	1. 上 绀	類組代碼	D36		
科目名稱	水文學	科目碼	D3693		
※本項考試依	:簡章規定所有考科均「不可」使用計算機。	本科試題	共計 1 頁		

- 1. Please explain following terms
 - (a). Rational Method. (5%)
 - (b). Time of Concentration. (5%)
 - (c). Rating Curve. (5%)
 - (d). Specific Retention. (5%)
- 2. Please explain how to estimate the 100-year event from 50 years daily maximum streamflow data. (15%)
- 3. The 40-minute unit hydrograph tabulated below is for a watershed.

Time (min)	0	20	40	60	80	100	120	140	160
UH (cms)	0	6	16	26	28	18	9	3	0

- (a). What is the watershed area? (6%)
- (b). What is the direct runoff hydrograph (DRH) that would be observed from the following effective rainfall data? (24%)

Time (min)	0~40	40~60
Effective rainfall (cm)	0.5	1

4. The inflow hydrograph of a reservoir is tabulated below. When t=0 day, the storage (S) of the reservoir is 30 m³/s/day and the outflow (Q) is 0 m³/s. Please calculate the outflow of the 3rd day when $\Delta t=1$ day and the relationship of outflow (Q) and storage (S) is shown as

$$Q = \begin{cases} \frac{1}{5} (\frac{2S}{\Delta t} + Q - 100) & for \quad \frac{2S}{\Delta t} + Q > 100 \\ 0 & otherwise \end{cases}$$

Time (days) t	0	1	2	3	4	5	6	7	8	9
Inflow (m³/s)	0	12	24	38	50	40	30	20	10	5

5. Assume the annual maximum streamflow of a station is normal distribution. The median of the streamflow data series is 850 cms. The standard deviation of the streamflow data series is 120 cms. Please estimate the 2-year designed storm event? (standard normal random variable Z: $Z \le -0.84$, P = 0.2; $Z \le 0$, P = 0.5; $Z \le 1$, P = 0.8413; $Z \le 2$, P = 0.9772) (15%)

(20%)