臺灣綜合大學系統 112 學年度學士班轉學生聯合招生考試試題

科目名稱	工程數學	類組代碼	D36
		科目碼	D3691

※本項考試依簡章規定所有考科均「不可」使用計算機。

本科試題共計 1 頁

1. (20%) Obtain the solution of the following ODE

(a)
$$y''' + y' = \sin x$$
 (10%)

(b)
$$y'' - 4y = -7e^{2x} + x$$
, $y(0) = 1$. $y'(0) = 3$ (10%)

2. (15%) Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 and $\mathbf{P} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$, What is \mathbf{P}^3 ?

3. (15%)The inverse of a 2 by 2 matrix seems to have determinant = 1:

$$\det(\mathbf{A}^{-1}) = \det(\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}) = \frac{ad-bc}{ad-bc} = 1$$
. What is wrong with this calculation? What is the correct $\det(\mathbf{A}^{-1})$?

- 4. (15%)
 - (a) Find the Fourier Sine series of the function f(x) = 1, $0 < x < \pi$ (8%)
 - (b) Using the results of (a), show that $\sin 1 + \frac{1}{3} \sin 3 + \frac{1}{5} \sin 5 + \dots = \frac{1}{4}\pi$. (7%)
- 5. (20%) Solve the heat problem $u_t = ku_{xx}$ in 0 < x < L, with the boundary conditions $u_x(0,t) = u_x(L,t) = 0$ and initial condition u(x,0) = f(x). What is u(x,t) in the bar after a long time (theoretically, as $t \to \infty$)?
- 6. (15%) Let $f(x,y) = \ln(x^2 + y^2 + 1) + e^{2xy}$
 - (a) Find the gradient of f at the point (0, -2) (5%)
 - (b) Find the directional derivative of f at the point (0, -2) in the direction of the vector $\mathbf{v} = 7\mathbf{i} 24\mathbf{j}$ (5%)
 - (c) Find the minimum value of the directional derivative at the point (0, -2). (5%)