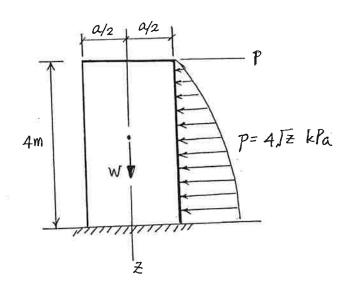

臺灣綜合大學系統 112 學年度學士班轉學生聯合招生考試試題

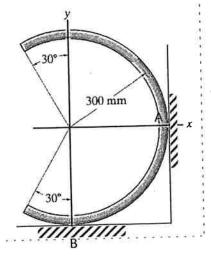
科目名稱	應用力學	類組代碼	D37
		科目碼	D3791
※本項考証	民依簡章規定所有考科均「不可」使用計算機。	本科試題	共計 2 頁

1. Force F of a magnitude 400 N acts perpendicular to the inclined plane ABC. (1) Express F as a Cartesian vector. (2) Use vector cross-product formula (向量外積公式) to compute the moment \mathbf{M}_O produced by F about the origin? Express \mathbf{M}_O in a vector form. (3) What is the shortest distance between the origin and the line of action of F? (30% =15+10+5%)

2. A force system with a resultant F_R and a moment M_R is applied at corner A of a rectangular plate. If we know that the force system can be replaced by a single resultant force without a resultant moment when acting at corners B or D. Determine the magnitude F_R and length a of the rectangular plate, when $\cos \theta = 0.6$ and $M_R = 12$ kN-m. (20%)


臺灣綜合大學系統112學年度學士班轉學生聯合招生考試試題

	· · · · · · · · · · · · · · · · · · ·	類組代碼	D37
科目名稱	應用力學	科目碼	D3791


※本項考試依簡章規定所有考科均「不可」使用計算機。

本科試題共計 2 頁

3. As shown below, a rectangular rigid block of a weight W=2000 kN is subjected to a horizontal distributed load $p(z) = 4\sqrt{z}$ kPa. The block has a depth of 5 m. What is minimum width a for the block to prevent the block from overturning? Assume the friction coefficient between the block and the ground is $\mu = 0.6$. Draw the free body diagram for the block. (25%)

4. A circular arc made of homogeneous material is shown below. The arc is rest on the ground and against a wall. (1) If the weight of per unit length of the arc is 10N/mm, locate the center of weight (\bar{x}, \bar{y}) for the arc by integration. (2) Determine the minimum friction coefficient μ between the arc and the ground, so the arc will not slip. Neglect the friction of the wall. Draw the free body diagram for the arc. Hint: $\sin \theta = 0.886$, $\cos \theta = 0.5$, when $\theta = 120^{\circ}$. (25%=15+10%)

