## 臺灣綜合大學系統 113 學年度學士班轉學生聯合招生考試試題

|                |                     | 類組代碼       | A07/C11 |
|----------------|---------------------|------------|---------|
| 科目名稱           | 線性代數                | 科目碼        | A0702   |
| <b>少</b> 上石 基计 | 簡章規定所有考科均「不可」使用計算機。 | 本科試題共計 2 頁 |         |

## Notations:

- (1)  $\mathbb{R}$  is the set of all real numbers and  $\mathbb{R}^n$  is the set of all *n*-tuples with entries from  $\mathbb{R}$ .
- (2)  $P_n(\mathbb{R})$  is the set of all polynomials with degree less than or equal to n and coefficients in  $\mathbb{R}$ .
- (3)  $\beta_n := \{1, x, x^2, \dots, x^n\}$  is the standard ordered basis of  $P_n(\mathbb{R})$ .
- (4)  $M_{m \times n}(\mathbb{R})$  is the set of all  $m \times n$  matrices with entries from  $\mathbb{R}$ .

## Problems:

- 1. (10%) Prove or disprove the following statement: Let  $T: \mathbb{R}^3 \to \mathbb{R}^4$  be a linear transformation. Then T is one-to-one if and only if the null space (or called <u>kernel</u>) of T is spanned by  $(0,0,0) \in \mathbb{R}^3$ .
- 2. (10%) Define  $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$  by  $T(f)(x) = 2f'(x) + \int_0^x f(t)dt$ . Find the matrix representation of T in the stantard ordered bases  $\beta_2$  and  $\beta_3$ .
- 3. Let

$$W_1 = \left\{ \begin{bmatrix} a & c \\ c & b \end{bmatrix} \middle| a, b, c \in \mathbb{R}. \right\}$$

and

$$W_2 = \left\{ \begin{bmatrix} a & 0 \\ b & -a \end{bmatrix} \middle| a, b \in \mathbb{R}. \right\}.$$

- (a) (7%) Find the dimension of  $W_1 \cap W_2$ . Justify your answer.
- (b) (8%) Find the dimension of  $W_1 + W_2$ . Justify your answer.
- 4. Let  $A \in M_{m \times n}(\mathbb{R})$  and  $P \in M_{n \times n}(\mathbb{R})$ .
  - (a) (7%) Show that  $rank(AP) \le rank(A)$ .
  - (b) (8%) Show that rank(AP)=rank(A) if P is invertible.
- 5. (10%) Prove or disprove the following statement: If  $A \in M_{2\times 2}(\mathbb{R})$  satisfies

$$A^3 = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix},$$

then A is invertible.

6. (a) (10%) Let  $A \in M_{3\times 3}(\mathbb{R})$ . Suppose that A has three eigenvalues 1, 2 and 3. Show that A is diagonalizable.

## 臺灣綜合大學系統 113 學年度學士班轉學生聯合招生考試試題

|              |                    | 類組代碼       | A07/C11 |
|--------------|--------------------|------------|---------|
| 科目名稱         | 線性代數               | 科目碼        | A0702   |
| <b>少</b> 上 西 | ·規定所有考科均「不可」使用計算機。 | 本科試題共計 2 頁 |         |

(b) (10%) Let  $A \in M_{5\times 5}(\mathbb{R})$ . Suppose that

$$\det(A - \lambda I) = -(\lambda - 4)^2(\lambda - 5)^3.$$

Either prove that A is diagonalizable or find all possible Jordan canonical forms of A.

7. Let C[-1,1] be the space with all continuous functions on [-1,1]. Define an inner product on C[-1,1] by

$$\langle f, g \rangle := \int_{-1}^{1} f(x)g(x)dx \text{ for } f, g \in C[-1, 1]$$

and set

$$||f|| := \sqrt{\langle f, f \rangle}.$$

- (a) (10%) Find an orthonormal basis of  $P_2(\mathbb{R})$  by using the Gram-Schmidt process applied to  $\beta_2$ .
- (b) (10%) Let  $h(x) = x^3$ . Find a polynomial  $u \in P_2(\mathbb{R})$  such that

$$||h-f|| \ge ||h-u||$$
 for all  $f \in P_2(\mathbb{R})$ .